



# **Brake Colloquium & Exhibition**

November 12–15, 2023 | San Antonio, Texas

sae.org/brake

The leading forum for advancements in brake systems and friction materials in North America



# Brake Colloquium & Exhibition November 12–15, 2023 | San Antonio, Texas sae.org/brake

The leading forum for advancements in brake systems and friction materials in North America

# Niobium-Alloyed Ferritic Nitrocarburized Brake Rotors

Mike Holly Andrew Halonen KCBMM Niobium N5

- NAO copper-free friction replacements show increased rotor wear
- Low met friction materials can increase wear
- New requirements to reduce "dust emissions" for both rotor and friction materials
  - Example Euro 7
- Corrosion is a concern.
  - Electric vehicle braking, and appearance.
- Desirable alternatives need to fit into existing manufacturing foundry & supply chain.



- Niobium-alloyed ferritic nitrocarburized gray iron brake rotors can offer the desirable combination of corrosion and wear resistance.
- Supporting Research:
  - Niobium alloying provides improved wear resistance of brake rotors and drums (SAE 2020-01-1627)
  - Ferritic Nitrocarburized brake rotors improves the corrosion performance of gray iron brake rotors (SAE 2011-01-0567)
- <u>Proposed Solution</u>: Combine niobium-alloyed brake rotors with ferritic nitrocarburizing (FNC)

Manufacturing Sequence:

- Rotors are cast in Gray Iron alloyed with Niobium. The Fe-Nb-C diagram describes the formation of Niobium carbide during cooling. Niobium carbides provide wear resistance.
- 2. Castings may be stress relieved to provide better dimensional control.
- 3. Rotors are finished machined
- Rotors are Ferritic Nitrocarburized. The Lehrer Diagram describes the metallurgical phases. The FNC case provides corrosion resistance (and some wear resistance)

### 5. <u>No subsequent machining or grinding</u> <u>required.</u>



Figure 2: Phase diagrams indicating the mechanism of FeNb dissolution (left) and re-precipitation of solute Nb (right).

#### Lehrer Diagram



# Tilted section EDS spectra on FNC edge



\*\* Analysis verifies the presence of niobium carbides in the epsilon iron nitride ferritic nitrocarburized case

| Spectrum Label |  | c     | N    | 0     | Si   | s    | π    | v    | G    | Mn   | Fe    | Cu   | NB    | Total  |
|----------------|--|-------|------|-------|------|------|------|------|------|------|-------|------|-------|--------|
| ectrum 4       |  | 20.74 |      | 17.99 | 1.14 | 0.12 |      |      | 0.15 | 0.73 | 58.92 | 0.20 |       | 100.00 |
| ectrum 5       |  | 16.25 |      | 19.49 | 2,92 | 0.18 |      |      | 0.21 | 0.96 | 59.58 | 0.41 |       | 100.00 |
| ectrum 6       |  | 17.84 | 3.83 | 6.46  | 0.77 | 0.11 |      |      |      | 0.87 | 70.11 |      |       | 100.00 |
| ectrum 7       |  | 22.41 | 6.47 |       | 0.43 |      | 2.78 | 0.29 | 0.36 | 0.43 | 32.01 |      | 34.82 | 100.00 |
| ectrum 8       |  | 17.44 | 4.54 |       | 0.97 |      |      |      | 0.53 | 0.95 | 75.57 |      |       | 100.00 |
| ectrum 9       |  | 16.95 | 4.15 | 4.36  | 1.80 |      |      |      |      | 0.55 | 71.74 | 0.46 |       | 100.00 |

#### SAE International®

Brake Colloquium & Exhibition-41st Annual

# **Test Matrix**

- Baseline standard high CE and eutectic gray irons
- Niobium alloyed (0.15-0.25 wt% Nb) modifications of base irons
- Ferritic nitrocarburized and as-cast samples
- NAO and low met friction materials
- 16 combinations
- 3 repetitions at each combination

| Grades                                |                   | G135 High CE<br>Baseline | G205 Baseline         | G135Nb                  | G205Nb           |  |  |  |
|---------------------------------------|-------------------|--------------------------|-----------------------|-------------------------|------------------|--|--|--|
|                                       |                   |                          | Mechanical Properties |                         |                  |  |  |  |
| Ultimate Tensile<br>Strength, Minimum | N/mm <sup>2</sup> | 135                      | 205                   | 180                     | 235              |  |  |  |
| Hardness                              | HBW               | 156 to 207               | 187 to 229 170 to 221 |                         | 197 to 235       |  |  |  |
|                                       |                   |                          | Chen                  | Chem <mark>istry</mark> |                  |  |  |  |
| Carbon Equivalent                     |                   | 4.30 to 4.60             | 3.90 to 4.30          | 4.30 to 4.60            | 3.90 to 4.30     |  |  |  |
| Carbon                                | T                 | 3.65 to 3.95             | 3.20 to 3.50          | 3.65 to 3.95            | 3.20 to 3.50     |  |  |  |
| Silicon                               | 1                 | 1.75 to 1.95             | 1.90 to2.40           | 1.75 to 1.95            | 1.90 to2.40      |  |  |  |
| Manganese                             | Ţ                 | 0.50 to 0.80             | 0.45 to 0.90          | 0.50 to 0.80            | 0.45 to 0.90     |  |  |  |
| Sulfur                                | % by mass         | 0.12 max                 | 0.12 max              | 0.12 max                | 0.12 max         |  |  |  |
| Phosphorus                            | Ī                 | 0.10 max                 | 0.10 max              | 0.10 max                | 0.10 max         |  |  |  |
| Chromium                              | Ţ                 | 0.25 max                 | 0.15-0.40             | 0.15 to 0.40            | 0.15 to 0.40     |  |  |  |
| Copper                                | 1                 | 0.40 max                 | 0.60 max              | 0.40 max                | 0.60 max         |  |  |  |
| Tin                                   | 1                 | 0.07 max                 | 0.07 max              | 0.07 max                | 0.07 max         |  |  |  |
| Niobium                               |                   | 0.10 max                 | 0.10 max              | 0.15 to 0.25            | 0.15 to 0.25     |  |  |  |
|                                       |                   |                          | Microst               | ructure                 |                  |  |  |  |
|                                       |                   | 70% Type A,              | 70% Type A,           | 70% Type A,             | 70% Type A,      |  |  |  |
|                                       |                   | Size 3 to 8 in a         | Size 4 to 8 in a      | Size 3 to 8 in a        | Size 4 to 8 in a |  |  |  |
|                                       |                   | Pearlitic                | Pearlitic             | Pearlitic               | Pearlitic        |  |  |  |
| Brake Surface                         |                   | Matrix with              | Matrix with           | Matrix with             | Matrix with      |  |  |  |
|                                       |                   | <10% free                | <10% free             | <10% free               | <10% free        |  |  |  |
|                                       |                   | ferrite and <            | ferrite and <         | ferrite and <           | ferrite and <    |  |  |  |
|                                       |                   | 1% carbides              | 1% carbides           | 1% carbides             | 1% carbides      |  |  |  |
| Number of Bruker Test                 |                   |                          |                       |                         |                  |  |  |  |
| Samples (3 non FNC, 3<br>FNC)         |                   | 6                        | 6                     | 6                       | 6                |  |  |  |
| Brake Rotor Castings                  |                   | 6                        | 6                     | 15                      | 12               |  |  |  |

- UMT Bruker TriboLab Tester Testing (GTL 22584)
  - Laboratory test on cast disc samples
- SAE J2707 Wear Test Procedure Method B Block Wear (Currently on test on solid brake rotor)
- Inertia Dynamometer Cyclical Rotor Corrosion Cleanability for FNC Rotor Applications (Currently on test on solid brake rotor)





Dynamometer Sample Cast Brake Rotor



- Burnishing procedure to obtain 90-95% of the friction contact area.
- GTL speed sensitivity snub test procedure, Bruker Tribolab HD
  - Repetition of the 20 snubs on the following test speed interval sequences: 40-0.5, 60-20, 80-40, 100-60 and 120-80 km/h.
  - Each test sequence was performed at one unit load value.
  - 0.5, 1.0 and 1.5 MPa.
  - Between starting each test mode, the parts were allowed to cool.

## Significant reduction in wear compared to baseline



SAE International® Brake Colloquium & Exhibition-41st Annual

23BC-0005

## Significant reduction in wear compared to baseline



SAE International® Brake Colloquium & Exhibition-41st Annual

### Significant reduction in wear compared to baseline



## High Carbon Equivalent Gray Iron, Low Met Friction



Less Brake Dust



G135 ALLOY with NIOBIUM and FNC



#### **BACKGROUND:**

- Bruker wear test at Greening, Inc in Detroit MI
- Low met friction material
- Niobium 0.15 0.25wt%

SAE International® Brake Colloquium & Exhibition-41st Annual

## Standard Eutectic Gray Iron, Low Met Friction



Less Brake Dust

G205 ALLOY with NIOBIUM



G205 ALLOY with NIOBIUM and FNC



#### **BACKGROUND:**

- Bruker wear test at Greening, Inc in Detroit MI
- Low met friction material
- Niobium 0.15 0.25wt%

MUCH Less Brake Dust

Niobium-alloyed ferritic nitrocarburized samples show the best combination of wear resistance



# GTL BRAKE SPEED SNUB SENSITIVITY TRIBOLOGICAL TEST-G135 Baseline Low Met Friction



**SAE International®** Brake Colloquium & Exhibition-41<sup>st</sup> Annual

23BC-0005

# GTL BRAKE SPEED SNUB SENSITIVITY TRIBOLOGICAL TEST-G135Nb+FNC Low Met Friction



23BC-0005

## **Brake Rotor Corrosion Cleanability - End of Test**



#### **Corrosion Cleanability-Apparent Friction and Brake Torque Variation-G135**



#### **Corrosion Cleanability-Apparent Friction and Brake Torque Variation-G135 FNC**



23BC-0005

#### Corrosion Cleanability-Apparent Friction and Brake Torque Variation-G135 Nb Plus FNC



|                      |                 | Corrosion  | Potential for debond and | Thermal<br>Expansion | Requires Post |                  |            |
|----------------------|-----------------|------------|--------------------------|----------------------|---------------|------------------|------------|
| Technology           | Wear Resistance | Resistance | peeling                  | Missmatch            | Grinding      | Environmental    | Cost       |
| G135 Baseline        | Low             | Low        | None                     | None                 | No            | Baseline         | Baseline   |
| G135 Nb + FNC        | ++              | ++         | None                     | None                 | No            | +                | -          |
|                      |                 |            |                          |                      |               |                  | (5x higher |
| Laser Hard Surfacing | ++              | ++         | High                     | High (Austenitics)   | Yes           | (Grinding swarf) | than FNC)  |

Niobium-alloying with FNC offers the following advantages over laser hard surfacing:

- Ferritic nitrocarburizing and niobium alloying are "in the metal."
- Same foundry processing & machining.
- No change, or minimal change required for friction materials.
- No post-grinding
- No grinding swarf to reclaim and waste treat
- Significantly lower cost than hard coat surfacing.
- Laser hard surfacing is a coating that must form a metallurgical bond with the surface that can show a debond failure mechanism.

### **Acknowledgements**

I would like to acknowledge the following individuals who contributed to the project.



#### Michigan Technological University:

Paul G. Sanders, Phd Materials Science and Engineering Russel Stein, Research Engineer



Mayflower Consulting, LLC: Andrew Halonen, Technical Consultant to CBMM.



#### Woodworth Inc:

Joe Betoski, Director Business Development Anthony Deciechi, Operations Manager

#### **Acknowledgements**



Continued:



ITT Friction Technologies: Ryan Vicary, Product Development & Innovation Manager North America

Greening Test Labs Chuck Greening, President Greening Associates / Greening Testing Laboratories, Inc. Vladimir Klotchikhine, Engineer Kevin Machus, Engineer

# Thank you!

Mike Holly Mike Holly Metals LLC Consultant for CBMM De Pere, Wisconsin USA 586 343 7320 mike.holly72@att.net CBMM Global Brake Lead: Erico Franca erico.franca@cbmm.com +55 (11) 98243-0067 m

North American Business Development: Andrew Halonen Business Development Consultant andrew@lightweighting.co 906.370.4984 m

Follow the Brake Developments,

https://www.niobium.tech/en/pages/content-pages/brake-discs